In vivo activities of GroEL minichaperones.
نویسندگان
چکیده
Fragments encompassing the apical domain of GroEL, called minichaperones, facilitate the refolding of several proteins in vitro without requiring GroES, ATP, or the cage-like structure of multimeric GroEL. We have identified the smallest minichaperone that is active in vitro in chaperoning the refolding of rhodanese and cyclophilin A: GroEL(193-335). This finding raises the question of whether the minichaperones are active under more stringent conditions in vivo. The smallest minichaperones complement two temperature-sensitive Escherichia coli groEL alleles, EL44 and EL673, at 43 degreesC. Although they cannot replace GroEL in cells in which the chromosomal groEL gene has been deleted by P1 transduction, GroEL(193-335) enhances the colony-forming ability of such cells when limiting amounts of GroEL are expressed from a tightly regulated plasmid. Surprisingly, we found that overexpression of GroEL prevents plaque formation by bacteriophage lambda and inhibits replication of the lambda origin-dependent plasmid, Lorist6. The minichaperones also inhibit Lorist6 replication, but less markedly. The complex quaternary structure of GroEL, its central cavity, and the structural allosteric changes that take place on the binding of nucleotides and GroES are not essential for all of its functions in vivo.
منابع مشابه
GroEL-GroES-mediated protein folding requires an intact central cavity.
The chaperonin GroEL is an oligomeric double ring structure that, together with the cochaperonin GroES, assists protein folding. Biochemical analyses indicate that folding occurs in a cis ternary complex in which substrate is sequestered within the GroEL central cavity underneath GroES. Recently, however, studies of GroEL "minichaperones" containing only the apical substrate binding subdomain h...
متن کاملThermodynamic stability and folding of GroEL minichaperones.
The apical domain of GroEL (residues 191 to 376) and its C-terminally truncated fragment GroEL(191-345) are expressed with high yield in Escherichia coli to give functional monomeric minichaperones. Owing to the reversible folding behaviour of the minichaperones we can analyse the folding of the polypeptide binding domain of the multidomain GroEL protein, the folding of which is known to be irr...
متن کاملSuppression of amyloid fibrils using the GroEL apical domain
In E. coli cells, rescue of non-native proteins and promotion of native state structure is assisted by the chaperonin GroEL. An important key to this activity lies in the structure of the apical domain of GroEL (GroEL-AD) (residue 191-376), which recognizes and binds non-native protein molecules through hydrophobic interactions. In this study, we investigated the effects of GroEL-AD on the aggr...
متن کاملCloning and Expression of Heat Shock Protein 60kDa Gene from Brucella melitensis as Subunit Vaccine
Brucellosis is caused by the bacterium Brucella and affects various domestic and wild species. GroEL (Heat Shock Protein 60kDa) as one of the major antigens that stimulate the immune system, increases Brucella survival. The aim of the current study was to clone and express GroEL in Escherichia coli in order to design subunit vaccine. Amplifying was performed using specific primers. The full-len...
متن کاملStabilization of GroEL minichaperones by core and surface mutations.
We report the crystal structures of two hexa-substituted mutants of a GroEL minichaperone that are more stable than wild-type by 7.0 and 6.1 kcal mol(-1). Their structures imply that the increased stability results from multiple factors including improved hydrophobic packing, optimised hydrogen bonding and favourable structural rearrangements. It is commonly believed that protein core residues ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 17 شماره
صفحات -
تاریخ انتشار 1998